AIと現場意思決定:建設安全の改革

建設規模が拡大し、業務が複雑化するにつれ、建設現場の安全管理は、システムや厳格な検査の導入を超えた実際的な課題に直面しています。

作業エリアの拡大、フェーズの変更、人員と設備の重複により、リスクは分散して動的に発生し、一元的に把握することが困難になります。

手作業による経験と固定されたプロセスに頼る従来の管理では、もはや現場の変化に対応できなくなっています。

01.多額の投資にもかかわらず、建設現場の安全管理が困難なままなのはなぜですか?

大規模な施設ではビデオ監視が標準で、ほとんどの重要なエリアをカバーしています。 しかし、「明確な可視性」によって経営効率は向上していない.

キャリアアグリゲーションとは何ですか?

 

問題は監視が不十分なことではないしかし、特にリスクがより頻繁かつ動的になるにつれて、手動での映像の確認、判断、対応には固有の遅れが生じます。

システムはインシデントを記録する しかし、リスクが拡大する前に介入することはほとんどない.

02. AIが建設現場に参入するために克服しなければならない実際的な障壁は何ですか?

AI による視覚分析が成熟するにつれて、一部のソリューションでは、現場のビデオをクラウドにアップロードしてインテリジェントな識別を行うようになりました。

これは、 固定、ネットワーク安定 環境。

 

バンド内連続キャリアアグリゲーション(連続コンポーネントキャリア)

 

However, the actual conditions of construction sites often differ significantly from this premise.

Large sites have scattered areas and frequent phase shifts, making consistent network coverage hard to maintain.

Over-reliance on continuous data transmission harms identification timeliness and alert reliability, especially in remote sites, weakening system usability.

Stable on-site decision-making capabilities are essential for AI to contribute to real-time safety management.

03.What Is the Local AI Architecture Supporting On-Site Decision-Making?

AI at construction sites requires a stable on-site decision-making mechanism, not just connection to existing surveillance.

 

バンド内連続キャリアアグリゲーション(非連続コンポーネントキャリア)

InHand Networks’ edge AI solution centers on a stable local AI mechanism, with the EC5550 Edge AI Computer as its core carrier.

On-site HD cameras capture footage, which is decoded, analyzed and judged locally by the EC5550, enabling near-instant risk identification without off-site transmission.

04.How Does On-Site AI Form a Closed Loop from Video Collection to Risk Judgment?

Reliable on-site AI relies on integrated computing power, stability and industrial adaptability, not just algorithms.

The EC5550’s core features ensure long-term AI operation:

  • Local AI Computing Power: Equipped with a high-performance NVIDIA chip (100 TOPS), it enables real-time local analysis of multiple video streams for safety checks without cloud dependence.
  • Multi-Channel Access: Supports simultaneous connection and parallel analysis of multiple HD cameras, ideal for dense monitoring areas.
  • Industrial-Grade Stability: Resists dust, vibration and temperature fluctuations (-20℃ to 70℃), avoiding AI interruptions.
バンド内連続キャリアアグリゲーション(非連続コンポーネントキャリア)

 

These invisible capabilities determine if AI is a demo or a long-term safety asset.

Risk Identification: How Does AI "Understand" Construction Risks On-Site?

Powered by the EC5550, AI continuously analyzes video streams to detect key risks: personnel presence, PPE compliance, dangerous area intrusion, and smoke/fire.

Based on continuous streams (not single frames), it reduces false/missed alarms. Stable long-term operation matters more than one-time identification.

 

バンド内連続キャリアアグリゲーション(非連続コンポーネントキャリア)

Risk Identification: How Does AI "Understand" Construction Risks On-Site?

Powered by the EC5550, AI continuously analyzes video streams to detect key risks: personnel presence, PPE compliance, dangerous area intrusion, and smoke/fire.

Based on continuous streams (not single frames), it reduces false/missed alarms. Stable long-term operation matters more than one-time identification.

 

On-Site Response: What Happens When AI Identifies Risks?

Local risk detection triggers instant actions: management system alerts, on-site audio-visual warnings, and full event recording for later review.

The entire process is on-site, forming a true closed-loop safety chain without manual monitoring or cloud delays.

05.Why Is This Local AI Architecture Better Suited for Long-Term Construction Site Management?

On-site decision-making brings key engineering benefits:

  • Network delay-free identification and timely responses;
  • Reduced bandwidth demands (no continuous video upload);
  • Enhanced data security via local processing.
バンド内連続キャリアアグリゲーション(非連続コンポーネントキャリア)

Flexible industrial networking allows expanding camera coverage with project phases, ensuring sustained EC5550 performance.

The EC5550 evolves from a standalone device to a foundational, lifecycle-stable node for on-site AI safety management.

06.Only When AI Operates Stably On-Site Can Safety Management Truly Transform

Safety transformation lies in continuous risk detectability and intervenability, not more systems.

Stable on-site AI shifts safety management from post-event handling to proactive, continuous prevention.

関連製品: